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Abstract

The comparison of numerical results for implicit–explicit and fully explicit Runge–Kutta time integration methods for a
nozzle flow problem shows that filtering can significantly degrade the accuracy of the numerical solution for long-time inte-
gration problems. We demonstrate analytically and numerically that filtering-in-time errors become additive for
iuN(x, t + kDt) � uN(x, t)i� iuN(x, t)i when nonidempotent filters are used, and suggest the development and implementa-
tion of idempotent filters.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In the last decade, significant attention has been paid to modal filtering in spectral methods [2,4,8,9]. Fil-
tering is popular in spectral and spectral element-type methods for several reasons. Firstly and most impor-
tantly, it stabilizes the numerical approximation and results in a more robust method. Furthermore, for
discontinuous functions, filtering can recover high-order accuracy at the points of discontinuity [11,10] and
in the smooth regions away from the discontinuity [23]. In the early 1990s, Gottlieb et al. [11] showed that
the Gibbs phenomenon, which is associated with the reconstruction of discontinuous functions, could be over-
come by accelerating the rate of convergence of the reconstruction using Gegenbauer polynomials. Since then,
a lot of work has followed along similar lines. A recent review of filtering in spectral methods can be found in
[8,13].

However, there are still many unresolved issues related to filtering, e.g., it is not clear how to choose a filter
for the problem at hand. What filter order should one use? Should the filter be applied once or more per time
step or perhaps once every several time steps? What is the effect of applying a filter repeatedly on the accuracy
of the approximation?
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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We aim to address some of these issues in this paper, and give some guidelines concerning how filters should
be designed and applied in practice for spectral and spectral element methods. We will restrict the theory and
numerical examples to two types of low-pass filters [21]: the sharp-cutoff or step-function filter used in classical
dealising methods [4] and the exponential filter. However, the ideas and analysis presented may be applied to a
more general class of filters.

One of the outcomes of comparing numerical test results using explicit Runge–Kutta (ERK) time-integra-
tion methods [5] to those using implicit–explicit (IMEX-RK) methods [18] is the realization that filtering may
severely degrade the accuracy of the approximation when applied for a large number of time steps. We can see
in Fig. 1.1 that the IMEX-RK tests, which were run at time steps an order of magnitude larger (on average)
than the ERK tests (DtERK � 8.56 · 10�4, DtIMEX–RK � 6.69 · 10�3), show superior accuracy, especially in the
case of relatively low-order exponential filters [16,17]. We integrated to a finite physical time T = 40 for both
the IMEX-RK and the ERK tests. The details of the physical and numerical setup for the nozzle flow test case
appear in Appendix A.

In Section 2, we review the underlying theory behind filtering in spectral methods. In Section 3, we analyze
the net effect of filtering on the accuracy of the numerical approximation, and show that filtering a numerical
approximation with the property iuN(x, t + kDt) � uN(x, t)i� iuN(x, t)i results in a multiplicative filtering pro-
cess, which is supported by numerical tests in Section 4. This observation leads us to suggest that time-depen-
dent filters be developed to control filtering-in-time errors. We propose time-dependent exponential filters in
Section 5, and construct filters whose filter order, p(t), is a function of time. We then show that if p(t) can be
properly controlled, we can overcome the potentially multiplicative net effect of filtering in time. The control
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Fig. 1.1. The top image is the mesh used for the two-dimensional steady-state converging-diverging nozzle flow tests. The black region is
solved implicitly when using the IMEX-RK scheme, and explicitly when using the ERK scheme. The exact steady-state solution to the
Euler equations has a shock at x @ 7.56. The two figures below compare the Mach number profiles at the centerline of the nozzle, y = 0, for
the ERK, IMEX-RK, and analytic solutions. The bottom-right figure is a close-up of the shock region in the bottom-left figure. The
polynomial degree N = 4 on each element and the order of the exponential filter p = 6.
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strategy for p(t) is based on the worst-case scenario, purely multiplicative filtering. Finally, we discuss the
results and make concluding remarks in Section 6.
2. Filtering

Our goal is to approximate the exact solution u(x, t) of a conservation law in the form
ouðx; tÞ
ot

þ of ðuðx; tÞÞ
ox

¼ 0: ð2:1Þ
We express u(x, t) as an infinite series of basis functions /n(x)
uðx; tÞ ¼
X1
n¼0

ûnðtÞ/nðxÞ: ð2:2Þ
In spectral methods, we project u(x, t) to the finite-dimensional space P N 2 f/nðxÞg
N
n¼0 and get the truncated

approximate solution
uN ðx; tÞ ¼ PNuðx; tÞ ¼
XN

n¼0

ûnðtÞ/nðxÞ: ð2:3Þ
PNuðx; tÞ 2 P N , where PN is spanned by the smooth basis functions /n(x), which form an L2-complete basis.
When using spectral methods to solve nonlinear conservation laws, nonsmooth solutions may develop.

Even if nonsmooth solutions do not develop, smooth solutions with sharp gradients may develop, as in the
case of high-Reynolds number fluid flows. If there is not enough spatial resolution in the numerical approx-
imation to adequately resolve such solutions (which will always be the case in the presence of shock/s), the
Gibbs phenomenon will develop. Not only will the Gibbs oscillations reduce the spectrally convergent rate
of decay of the global expansion coefficients (exponential rate) to a linear rate of decay (N�1), but the nonlin-
ear interaction of the Gibbs oscillations with the numerical solution will increase the energy of all the modes,
thereby resulting in nonlinear instability (unbounded growth of high-frequency energy in time). Thus, the
numerical method may lose its beautiful convergence properties and become unstable.

We can add a term to our original PDE (2.1) that dissipates the high-frequency energy components and
therefore controls the instability
ouðx; tÞ
ot

þ of ðuðx; tÞÞ
ox

¼ �ð�1Þpþ1 o2pu
ox2p

: ð2:4Þ
Although adding artificial dissipation to (2.1) will stabilize the method, it is costly and may introduce restric-
tions on the stable time step.

Instead, we follow the approach originally introduced in [19,20] and add dissipation by applying a modal
filter to the numerical approximation at regular intervals. The filtered approximation is
FNuNðx; tÞ ¼
XN

n¼0

r
n
N

� �
ûnðtÞ/nðxÞ; ð2:5Þ
where r(g) is the filter kernel.
Let us introduce two commonly used filter functions, which we will refer to in subsequent sections:

1. Exponential filter
r
n
N

� �
¼

1; 0 6 n 6 N c;

exp �a n�N c

N�N c

� �ph i
; N c < n 6 N ;

(
ð2:6Þ
where p is the order of the filter, a = �log � (� is the machine zero), and Nc is the cutoff mode.
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2. Sharp-cutoff or step-function filter
r
n
N

� �
¼

1; 0 6 n 6 N c;

0; N c < n 6 N ;

�
ð2:7Þ
where Nc is the cutoff mode.

3. From multi-modes to uni-mode

Let us assume that kuN ðx; t þ DtÞ � uNðx; tÞk � kuN ðx; tÞk ) uN ðx; t þ DtÞ � uN ðx; tÞ. For now, we restrict
the time step, Dt, to be constant, and assume that the filter kernel, r(g), does not change with time.

After applying the filter once at the end of the time step, the filtered approximation becomes:
~uN ðx; t þ DtÞ ¼FNuN ðx; t þ DtÞ ffiFNuN ðx; tÞ ð3:8Þ

¼
XN

n¼0

r
n
N

� �
ûnðtÞ/nðxÞ: ð3:9Þ
If we filter once again at the end of the next time step, we have
~uN ðx; t þ 2DtÞ ¼FNuN ðx; t þ 2DtÞ ffiFN~uN ðx; t þ DtÞ ð3:10Þ

ffiFNðFNuN ðx; tÞÞ ¼
XN

n¼0

r
n
N

� �
r

n
N

� �
ûnðtÞ/nðxÞ

� �
ð3:11Þ

¼
XN

n¼0

r2 n
N

� �
ûnðtÞ/nðxÞ ð3:12Þ

¼F2
NuN ðx; tÞ: ð3:13Þ
Repeating this process k times, and assuming that iuN(x, t + k Dt) � uN(x, t)i� iuN(x, t)i we have
~uN ðx; t þ kDtÞ ffiFk
NuN ðx; tÞ ¼

XN

n¼0

rk n
N

� �
ûnðtÞ/nðxÞ ð3:14Þ

¼
XN

n¼0

~rkDt
n
N

� �
ûnðtÞ/nðxÞ: ð3:15Þ
The net effect of filtering k times is represented by the net filter ~rkDtðgÞ, which we define as
~rkDtðgÞ ¼ rkðgÞ: ð3:16Þ

We now assume that our filter kernel is an exponential filter with Nc = 0
rðgÞ ¼ expð�agpÞ: ð3:17Þ

Therefore,
~uN ðx; t þ kDtÞ ffiFk
NuN ðx; tÞ ¼

XN

n¼0

rk n
N

� �
ûnðtÞ/nðxÞ ð3:18Þ

¼
XN

n¼0

exp �ak
n
N

� �p� �
ûnðtÞ/nðxÞ ð3:19Þ
i.e. the net filter becomes
~rkDtðgÞ ¼ rkðgÞ ¼ expð�akgpÞ: ð3:20Þ

Filtering repeatedly results in an multiplicative process, under the assumptions stated at the beginning of

this section. In fact, a purely multiplicative filtering process, which is represented by the net filter, is the
upper-bound on filtering time-dependent problems, resulting in a net filter kernel that grows in strength (area
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under the net filter kernel vs. mode number curve diminishes) with each time step, and is equal to rk after k

steps. We can clearly see from this analysis that as the number of time steps k grows large, which we expect in
long-time simulations, the net filter kernel can have an extremely strong, crippling effect on the accuracy of the
numerical solution.

For spectral element methods, it is common to use polynomial approximations of degree N = 4
to N = 16 on each subdomain. Filtering regularly can effectively zero out many of the modes,
thereby potentially reducing polynomial approximations of degree N = 4 to N = 16 to much
lower-degree polynomials. The same holds for classical spectral methods with polynomial degree
N = 128, 256, . . ., although it is more difficult to ‘‘see’’ the loss in accuracy. We demonstrate the
effects of using nonidempotent filters in Section 4, where we conduct a number of numerical
experiments.
4. Numerical experiments

In order to validate the analysis in Section 3, we perform the following set of numerical experiments. First,
we repeat the nozzle flow test case using small time steps, Dt = 1 · 10�6, and polynomials of degree N = 4 on
each element. We use an initial condition which is very far from the exact steady-state solution (the IC is a
linear profile connecting the inflow and outflow BCs), and are therefore solving a time-dependent problem.
Since the time steps are very small, the solution will change very slowly with respect to the time step number,
k, and should adhere to the above theory. We apply a nonidempotent exponential filter (3.17) and plot the
results after k = 104 time steps.

Fig. 4.3(a) and (b) shows that the nonidempotent exponential filter degrades the accuracy of the numer-
ical solution, just as we predicted above. In fact, we see a staircase phenomenon develop. The approxima-
tions, which originally start out as polynomials of degree N = 4, are filtered into 0th-degree polynomials
on each subdomain (piecewise-constants) by the nonidempotent filter of order p = 6, resulting in a solu-
tion that looks flat on each element (Fig. 4.3). The staircase-looking results from this numerical experi-
ment support Fig. 3.2, which shows plots of the net filter versus mode number for the nonidempotent
exponential filter based on (3.20) for varying number of time steps. Fig. 3.2(e), corresponding to
k = 104 time steps, shows that the filters of order p = 6 and p = 8 zero out virtually all but the first mode
for polynomials of degree four. Even the p = 16 nonidempotent exponential filter zeros out all but the first
2 modes after 104 steps.

Table 4.1 supports the assumption that iuN(x, t + kDt) � uN(x, t)i� iuN(x, t)i for the Mach number for the
nozzle flow example described above. The second column shows results for the average value of

kMðx;tþDtÞ�Mðx;tÞk2

kMðx;tÞk2
for different values of k, while the fifth column shows results for kMðx;tþkDtÞ�Mðx;tÞk2

kMðx;tÞk2
. Note that

kMðx;tþkDtÞ�Mðx;tÞk2

kMðx;tÞk2
� 1 for all values of k up to 104.

Additional evidence of the staircase phenomenon can be seen in the ERK Mach number profile in
Fig. 1.1. The onset of staircasing is evident in the ERK approximation (gray) which was integrated
for 46,741 time steps. The IMEX-RK approximation (dashed) was integrated for 5975 time steps
and does not exhibit staircasing at this scale, although it does exhibit staircasing at higher
magnifications.

We perform the same exact numerical experiment we carried out for the nonidempotent exponential filter to
test the idempotent sharp-cutoff filter defined in Section 2 (2.7). We use Nc = N � 1, polynomial degree N = 4
and Dt = 1 · 10�6. We can see from the results in Fig. 4.3(c) and (d) that the sharp-cutoff filter is indeed idem-
potent and does not result in staircasing, since it only cuts off the highest mode n = N. However, if the solution
is smooth and well resolved, filtering is not needed.

We repeat the filtering experiments conducted above for one more test case. Fig. 4.4 compares the non-
idempotent exponential filter of order p = 6 to the sharp-cutoff filter with Nc = N � 1 for the two-dimen-
sional cylinder flow test case at Re = 125 (refer to Appendix A). The simulation is restarted at time
t = 150, at which point the flow is fully-developed with periodic vortex shedding occurring. We apply both
types of filters for 104 time steps, and compare the resulting Mach contours (filtered at every stage). We



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mode, n

σ kΔ
t

N = 4, k = 1, alpha = 17

p=6
p=8
p=10
p=12
p=14
p=16

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mode, n

σ kΔ
t

N = 4, k = 10, alpha = 17

p=6
p=8
p=10
p=12
p=14
p=16

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mode, n

σ kΔ
t

N=4, k=100, alpha=17

p=6
p=8
p=10
p=12
p=14
p=16

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mode, n

σ kΔ
t

N=4, k=1,000, alpha=17

p=6
p=8
p=10
p=12
p=14
p=16

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mode, n

σ kΔ
 t

N=4, k=10,000, alpha=17

p=6
p=8
p=10
p=12
p=14
p=16

(a) (b)

(c) (d)

(e)

Fig. 3.2. Net filter strength versus mode number for nonidempotent exponential filter (3.20) of order p = 6, 8, 10, 12, 14, 16. Number of
time steps k = 1 (top-left), k = 10 (top-right), k = 102 (middle-left), k = 103 (middle-right), and k = 104 (bottom). Polynomial degree
N = 4, a = 17.
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can clearly see staircasing when the nonidempotent exponential filter is used (Fig. 4.4(a)), and no staircas-
ing when the sharp-cutoff filter is used (Fig. 4.4(b)). The time steps, Dt = 1 · 10�6, and polynomials degree
is N = 4.



Table 4.1
Measures of iuN(x, t + kDt) � uN(x, t)i2 and iuN(x, t)i2 for Mach number (nozzle flow test)

k Avg: kMðx;tþDtÞ�Mðx;tÞk2

kMðx;tÞk2
iM(x, t + kDt) �M(x, t)i2 iM(x, t)i2

kMðx;tþkDtÞ�Mðx;tÞk2

kMðx;tÞk2

101 1.53E�05 5.69E�05 3.73E�01 1.53E�04
102 1.27E�05 4.74E�04 3.73E�01 1.27E�03
103 3.66E�06 1.36E�03 3.73E�01 3.65E�03
104 4.60E�07 1.44E�03 3.73E�01 3.85E�03
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Fig. 4.3. Numerical experiments for the nonidempotent exponential filter and the idempotent sharp-cutoff filter. The top two plots show
the staircase effect for nonidempotent exponential filter with filter order p = 6, while the bottom plots are staircase-free for the idempotent
sharp-cutoff filter with Nc = N � 1. Polynomial degree N = 4 and Dt = 1 · 10�6 for all results. The plots on the right are blow-ups of the
plots on the left. All figures show the Mach number profile at the centerline of the nozzle, y = 0.
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Fig. 4.4. The two plots compare the Mach contours for the cylinder vortex shedding test case at Re = 125. The top plot shows results for
the nonidempotent exponential filter with filter order p = 6, while the bottom plot shows results for the sharp-cutoff filter with Nc = N � 1.
Dt = 1 · 10�6 and polynomial degree is N = 4. The number of time steps k = 104.
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5. Idempotent and time-consistent filters

5.1. Fundamental concepts

Definition 5.1 (Time-consistent filter). A time-consistent filtering process will result in the same net filter at
final time T = k1Dt1 = k2Dt2
~rk1Dt1
ðgÞ ¼ ~rk2Dt2ðgÞ: ð5:21Þ
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Definition 5.2 (Idempotent filter). An idempotent filtering process is one for which
~rk1DtðgÞ ¼ ~rk2DtðgÞ ¼ ~rDtðgÞ: ð5:22Þ
If the filter is truly idempotent, it will have the same net effect after one million time steps as it does after
one time step. Also, an idempotent filtering process is time-consistent. Note that if A is an idempotent oper-
ator, then A2 = A.

Proposition 5.1 (Sharp-cutoff filter is idempotent). A sharp-cutoff or step-function filter
r
n
N

� �
¼

1; 0 6 n 6 N c;

0; N c < n 6 N :

�
ð5:23Þ
will result in an idempotent and therefore time-consistent filtering process.

Proof. The net filter is
~rkDt
n
N

� �
¼ rk n

N

� �
ð5:24Þ

¼
1k; 0 6 n 6 N c

0k; N c < n 6 N

(
ð5:25Þ

¼
1; 0 6 n 6 N c

0; N c < n 6 N

(
ð5:26Þ

¼ r
n
N

� �
ð5:27Þ

¼ ~rDt
n
N

� �
: ð5:28Þ
The maximum possible filtering-in-time error after k steps is equal to the maximum possible filtering-in-time
error after one step. h
5.2. Time-dependent filters

It is well known that the rate of convergence of the numerical approximation uN to the analytic solution u is
governed by the regularity or smoothness of the function u. If u 2 C1, then the rate of convergence is greater
than any power of N (spectral convergence). However, if u is discontinuous, then the Gibbs oscillations affect
the solution over the entire domain or subdomain, leading to a very slow rate of convergence. In the case of
discontinuous solutions and under-resolved smooth solutions, we would still like to recover high-order accu-
racy in smooth regions away from the discontinuity. According to Proposition 5.1, idempotent filtering may
be achieved by applying sharp-cutoff filters, but such filters have been shown to adversely affect the conver-
gence rate of the approximation [6,21]. Vandeven [23] shows that it is possible to accelerate the rate of con-
vergence by postprocessing uN after each time-step iteration using a modal filter (2.5) with the following
properties. Let us define a real function r(g) 2 C1[0,1] such that
rðgÞ :

rð0Þ ¼ 1;

rðkÞð0Þ ¼ 0 k 6 p;

rð1Þ ¼ 0;

rðkÞð1Þ ¼ 0 k 6 p:

8>>><
>>>:

ð5:29Þ
Note that the properties listed in (5.29) are sufficient (not necessary) and will recover fixed-order convergence.
We now consider the exponential filter function. The exponential filter does not meet all of the conditions in
(5.29). However, it appears to recover high-order accuracy in practice [13]. Although we will proceed within
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the framework of the exponential filter kernel, it is also possible to apply other types of filter kernels, since the
precise shape of the filter does not significantly affect the accuracy [3].

It is important to point out that we are not only interested in solving steady-state problems, but in the more
general case of solving time-dependent problems or problems with transient behaviour.

We propose the following: let us make our filter kernel time-dependent by allowing the order of the filter, p,
to be a function of time
p ¼ pðtÞ: ð5:30Þ

For generality let pi : p0, p1, . . ., pk�1 be a sequence of filter orders such that p0 is the order of the filter applied
after integrating one time step, while pk�1 is the order of the filter after integrating k time steps. We assume
that the parameters a, N are constant for all times. The sequence of filter kernels is
ri
n
N

� �
¼

1; 0 6 n 6 N c;

exp �a n�N c

N�N c

� �pi
h i

; N c < n 6 N ;

(
i ¼ 0; . . . ; k � 1: ð5:31Þ
After k time steps, our filtered approximation becomes
~uN ðx; t þ kDtÞ ¼
XN

n¼0

ðr0r1r2 . . . rk�1ÞûnðtÞ/nðxÞ ð5:32Þ

¼
XN

n¼0

Yk�1

i¼0

ri

 !
ûnðtÞ/nðxÞ ð5:33Þ

¼

PN
n¼0

ûnðtÞ/nðxÞ; n 6 N c

PN
n¼0

exp �a
Pk�1

i¼0

n�N c

N�N c

� �pi
� �

ûnðtÞ/nðxÞ; n 6 N

8>>><
>>>:

ð5:34Þ

¼
XN

n¼0

~rkDtûnðtÞ/nðxÞ: ð5:35Þ
Definition 5.3 (Net filter). In general, the net filter is defined as
~rkDtðgÞ ¼
Yk�1

i¼0

riðgÞ: ð5:36Þ
The net filter is therefore
~rkDt
n
N

� �
¼

1; n 6 N c;

exp �a
Pk�1

i¼0

n�N c

N�N c

� �pi
� �

n 6 N :

8<
: ð5:37Þ
We now ask ourselves the following question: How should we choose the filter order pi after each time step?
In order for our filtering process to remain idempotent and therefore time-consistent, we must conserve the
initial net filter
~rkDtðgÞ ¼ ~rDtðgÞ: ð5:38Þ
Therefore, we must choose the sequence pi such that
exp �a
Xk�1

i¼0

n� N c

N � N c

� �pi
" #

¼ exp �a
n� N c

N � N c

� �p0
� �

; n ¼ N c þ 1; . . . ;N ð5:39Þ
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Fig. 5.5. Filter order pk versus time step k for various choices of parameter ak. The four curves in each plot are for ak = k1/4, k1/2, k3/4, k1.
The plot on the left is for 106 time steps, while the plot on the right is for 103 time steps. p0 = 6, a = 17, Nc = 0, n

*
= 1.
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or
Xk�1

i¼0

n� N c

N � N c

� �pi

¼ n� N c

N � N c

� �p0

; n ¼ N c þ 1; . . . ;N : ð5:40Þ
However, we can see that the left-hand side is greater than the right-hand side
n� N c

N � N c

� �p0

þ
Xk�1

i¼1

n� N c

N � N c

� �pi

P
n� N c

N � N c

� �p0

; ð5:41Þ
since n�N c

N�N c
P 0. Therefore, this filtering process cannot be purely idempotent according to the definition. Nev-

ertheless, we add coefficients ak to the right-hand side, which can allow us to make the process less
multiplicative
Xk�1

i¼0

n� N c

N � N c

� �pi

¼ ak
n� N c

N � N c

� �p0

: ð5:42Þ
We can rewrite this as
n� N c

N � N c

� �pk�1

þ
Xk�2

i¼0

n� N c

N � N c

� �pi

¼ ak
n� N c

N � N c

� �p0

: ð5:43Þ
Now solving for pk�1
pk�1 ¼
log ak

n�N c

N�N c

� �p0

�
Pk�2

i¼0
n�N c

N�N c

� �pi
� �

log n�N c

N�N c

� � ; k P 2; N c þ 1 6 n < N : ð5:44Þ
We remove the summation from the above expression for pk�1 by rewriting Eq. (5.44) as
pk�1 ¼ p0 þ
logðak � ak�1Þ

log n�N c

N�N c

� � ; k P 2; N c þ 1 6 n < N : ð5:45Þ
We have an expression for pk�1 which depends on n = Nc + 1, . . ., N, Nc, p0 and ak. In order to retain the
structure of the original filter function, which in this case happens to be the exponential filter, we cannot make
pk�1 a function of n. In other words, we should not compute a different value of pk�1 for each of the N + 1
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values of n. Instead, we need to choose one value of n which will be used to compute pk�1. Let us refer to this
value of n as n*.

The time-dependent exponential filter becomes
Fig. 5.
plot ar
rk�1

n
N

� �
¼

1; 0 6 n 6 N c;

exp �a n�N c

N�N c

� �pk�1
h i

; N c < n 6 N ;

8<
: ð5:46Þ

pk�1 ¼ p0 þ
log ak � ak�1ð Þ

log n��N c

N�N c

� � ; k P 2; 0 6 N c < n� < N : ð5:47Þ
Eq. (5.47) does not have a solution for ak = C, where C is a constant. However, it does have solutions for

pk > 0 provided that 0 < ak � ak�1 <
n��N c

N�N c

� ��p0

. We plot pk versus k for ak = k1/4, k1/2, k3/4, k1 in Fig. 5.5

for 103 and 106 time steps (p0 = 6, a = 17, Nc = 0, n* = 1). We can see that ak = k results in pk = p0, which
corresponds to using a constant filter order, while ak = k1/4 results in a filter order that ranges from p0 = 6
(k = 1) to roughly p = 15 (k = 106).

Fig. 5.6 shows graphs of the filter kernel rk versus mode number n for ak = k3/4 (left) and ak = k1/4 (right)
based on (5.46) and (5.47). The four curves in each plot are for k = 100, 102, 104, 106 time steps. (p0 = 6,
a = 17, Nc = 0, n* = 1). The area under the ak = k1/4 time-dependent filter curve grows at a significantly faster
rate than that under the ak = k3/4 filter curve, which is expected since the corresponding filter order grows at a
faster rate (Fig. 5.5).

To demonstrate that time-dependent filters can help preserve accuracy, we repeat the nozzle flow test prob-
lem using the filter based on (5.46) and (5.47) for both ERK and IMEX-RK time integration schemes. We
apply the filter once per time step with the following parameters: Nc = 0, n* = 1, ak = k3/4, p0 = 6, a = 17.
Note that we choose ak = k3/4, which guarantees that pk P p0 since 0 < ak � ak�1 6 1, and results in a filter
order that does not grow as quickly as ak = k1/4 and ak = k1/2 (refer to Fig. 5.5), and is more robust. We
can see in Fig. 5.7 that the time-dependent exponential filter captures the shock far better than the nonidem-
potent filter (gray line), and produces very similar results for both the ERK (92,914 time steps) and IMEX-RK
(7465 time steps) approximations.

The optimal choice of ak, p0, Nc and n* for both accuracy and stability is still an open problem.
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= 1, ak = k3/4, p0 = 6, a = 17.
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6. Conclusions

We identify the mechanism by which filtering can become an multiplicative process in this paper. Filtering a
numerical approximation for which iuN(x, t + kDt) � uN(x, t)i� i uN(x, t)i will result in a growing filtering-in-
time error which will erase modes from the Fourier or polynomial approximation when nonidempotent filters
are used. Purely multiplicative filtering is the worst-case scenario for time-dependent problems, and will occur
if the time step is very small (e.g. due to severe stability time-step restrictions, etc.), the solution is at or near
steady-state, or a combination thereof. The assumptions made in Section 3 are supported by the results in
Table 4.1 for the nozzle flow example. The theory developed in Section 3 holds for time-dependent problems
as long as kDt� tc, where tc is the characteristic time-scale.

In general, filtering will erode the accuracy of the numerical approximation, but at a slower rate than that
defined by the net filter (purely multiplicative) as we can see in Fig 1.1. We conjecture that the level of mul-
tiplicativity is a function of the time step Dt. The slight staircasing in Fig. 1.1 for k = 46,741 time steps looks
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very much like that in Fig. 4.3 for k = 102 time steps for the filter of order p = 6, corresponding to the net filter
~r100Dt. This can be seen in Fig. 5.8, where the results from Figs. 1.1 and 4.3 at the section of the nozzle where
the Mach number profiles have a similar slope are plotted. The ratio of number of time steps is of the order of

the ratio of the average time step sizes 46;741
100
¼ O 8:56�10�4

1�10�6

� �
. Therefore, the filtering error for the

Dt � 8.56 · 10�4 test is roughly 8:56�10�4

1�10�6 ¼ 856 times less additive than that for the Dt = 1 · 10�6 purely mul-

tiplicative test case. This means that a filtering process that is even three orders of magnitude less multiplica-
tive than a purely multiplicative process still leads to significant loss of accuracy for long-time integration
problems. A careful study needs be carried out to understand the levels of additivity of filtering errors for vary-
ing levels of d = iuN(x, t + kDt) � uN(x, t)i/iuN(x, t)i.

We conduct several numerical experiments in Section 4 that support the theory developed. Exponential and
sharp-cutoff filters are applied for 104 time steps to a steady-state, inviscid compressible nozzle flow simulation
governed by the two-dimensional compressible Euler equations, and a cylinder flow simulation (Re = 125)
with periodic vortex shedding governed by the two-dimensional compressible Navier–Stokes equations. Non-
idempotent exponential filters zero out all but the first couple of modes, and result in staircasing of the numer-
ical solution, while the idempotent sharp-cutoff filter only zeros out the highest mode n = N. This can be seen
in Figs. 4.3 and 4.4.

In Section 5, we define the concepts of time-consistent and idempotent filtering processes, and generalize the
definition of the net filter for filters that may be time-dependent. A time-dependent filter (5.46) and (5.47) is
constructed based on mimicking an idempotent filtering process that allows one to control the degree of the
filter’s multiplicity, and then tested on the nozzle flow problem. The test results, which are shown in Fig. 5.7,
are nearly identical for the IMEX-RK and the ERK time integration schemes, even though the ERK test was
run for roughly ten times as many time steps. Furthermore, we can see that both the ERK and IMEX-RK
results with the time-dependent filter are superior at capturing the shock than the ERK results with the non-
idempotent filter. It is important to mention though that determining the optimal parameters for the time-
dependent filter is still an open problem and a source for future work.

To summarize, idempotent filters prevent ‘‘multiplicative’’ filtering . Idempotent filtering may be achieved
by using sharp-cutoff filters, although sharp-cutoff filters have been shown to decrease the rate of convergence
of the numerical approximation [6,21]. We suggest the development and application of time-dependent spec-
tral filters, such as those described by (5.46) and (5.47). In the future, spatially [22] and temporally adaptive
filters, for which the filter order p = p(x, t) is a function of both space and time, need to be constructed for
spectral and spectral element methods.
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Appendix A

We provide some background information about the numerical test cases.

A.1. Compressible Navier–Stokes equations

We review the compressible, nondimensional Navier–Stokes equations in conservation form, which will be
used to test the RK schemes described in this paper. Consider the three-dimensional Navier–Stokes equations
given in Cartesian coordinates
oq

ot
þr � FðqÞ ¼ 1

Reref

ðr � FmÞ; t > 0: ð6:48Þ
The state vector q and the flux vector F(q) are given as
q ¼

q
qu
qv
qw
E

2
66664

3
77775; FðqÞ ¼

qu
qu2 þ p

quv
quw
ðE þ pÞu

2
66664

3
77775îþ

qv
quv

qv2 þ p
qvw
ðE þ pÞv

2
66664

3
77775ĵþ

qw
quw
qvw

qw2 þ p
ðE þ pÞw

2
66664

3
77775k̂; ð6:49Þ
where q is density, u, v and w are the Cartesian velocity components, E is the total energy, and p is the pres-
sure. The total energy
E ¼ q T þ 1

2
ðu2 þ v2 þ w2Þ

� �
: ð6:50Þ
The pressure and temperature are related through the ideal gas law
p ¼ ðc� 1ÞqT ; ð6:51Þ

where T is the temperature and c = cp/cv is the ratio between the constant pressure (cp) and constant volume
(cv) heat capacities. c = 1.4 for air. The viscous vector is
Fm ¼

0

sxx

syx

szx

sxxuþ syxvþ szxwþ ck
Pr

oT
ox

2
6666664

3
7777775

îþ

0

sxy

syy

szy

sxyuþ syyvþ szywþ ck
Pr

oT
oy

2
6666664

3
7777775

ĵ ð6:52Þ

þ

0

sxz

syz

szz

sxzuþ syzvþ szzwþ ck
Pr

oT
oz

2
6666664

3
7777775

k̂: ð6:53Þ
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We assume that the fluid is Newtonian, for which the stress tensor is defined as
sxixj ¼ l
oui

oxj
þ ouj

oxi

� �
þ dijk

X3

k¼1

ouk

oxk
; ð6:54Þ
where l is the dynamic viscosity, k is the coefficient of Bulk viscosity for the fluid, and k is the coefficient of
thermal conductivity. We use Sutherland’s law to relate the dynamic viscosity to the temperature
lðT Þ
ls

¼ T
T s

� �3
2 T s þ S

T þ S
; ð6:55Þ
where ls = 1.716 · 10�5 kg/m s, Ts = 273 K, S = 111 K and the Prandtl number Pr = .72 for atmospheric air.
Stokes hypothesis gives us k ¼ �2

3
l.

We normalize Eq. (6.50) using reference values uref = u0, qref = q0, pref ¼ q0u2
0, T ref ¼ u2

0=cv and L as the ref-
erence length. Therefore, the reference Reynolds number Reref ¼ q0u0L

l0
and the Prandtl number Pr ¼ cpl0

k0
.

A.2. Two-dimensional nozzle flows

Consider the two-dimensional Euler equations given in conservation form
oq

ot
þr � FðqÞ ¼ 0: ð6:56Þ
The state vector q and the flux vector F(q) are given in Section A.1 for the three-dimensional Euler equations.
For the two-dimensional Euler equations, the state vector is
q ¼ ½q;qu; qv;E	: ð6:57Þ

We consider the flow in a two-dimensional duct (rectangular cross-section) or nozzle, modeled using the

Euler equations. We solve the two-dimensional compressible Euler equations using both ERK and IMEX-
RK time-stepping schemes and compare the accuracy and efficiency of both schemes. The converging-diverg-
ing nozzle (Fig. 1.1) has an area A(x) given by
AðxÞ ¼
1:75� :75 cosðð:2x� 1:0ÞpÞ; 0 6 x 6 5;

1:25� :25 cosðð:2x� 1:0ÞpÞ; 5 6 x 6 10:

�
ð6:58Þ
This is a classic one-dimensional steady (steady-state), inviscid compressible flow problem that has an analytic
solution [1] on the centerline at y = 0. The initial condition is a linear profile that connects the exact (analytic)
boundary conditions at x = 0 and x = 10.

A ratio between the stagnation pressure and the back pressure of .75 (back pressure/stagnation pressure)
results in a choked flow with a stationary normal shock in the divergent part of the nozzle at x @ 7.56. The
Mach number M = 1.0 and the stagnation temperature T = 300 K as the flow is choked. The inflow Mach
number M = .240 and the outflow Mach number M = .501.
A.3. Navier Stokes equations: cylinder flow

Consider the two-dimensional Navier–Stokes equations given in conservation form
oq

ot
þr � FðqÞ ¼ 1

Reref

ðr � FmÞ: ð6:59Þ
The state vector q and the flux vector F(q) are given in Section A.1 for the three-dimensional Navier–Stokes
equations. For the two-dimensional Navier–Stokes equations, the state vector is
q ¼ ½q;qu; qv;E	: ð6:60Þ
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Two-dimensional flow around a cylinder predicted by the 2D NS equations has good agreement with exper-
imental results up to Reynolds numbers of roughly Re = 180. For Re > 180, three-dimensional effects take
place, and numerical results can no longer be validated against experimental results. We perform calculations
at Re = 125. We run the test with polynomials of degree N = 4 until time T = 150, by which periodic vortex
shedding is well established. The computational domain is a disk with radius equal to approximately 20 cyl-
inder diameters.

A.4. Numerical scheme

We follow the method of lines approach, and discretize the spatial operators using a nodal discontinuous
Galerkin method based on [7,14,15].

The local approximation in each subdomain D is the Nth-degree polynomial
pNðxÞ ¼
XðNþ1ÞðNþ2Þ=2

k¼1

pN ðxkÞLkðxÞ; ð6:61Þ
where xk are the (N + 1)(N + 2)/2 Hesthaven electrostatic points [12] in each domain, Lk(x),
k 2 [1, . . ., (N + 1)(N + 2)/2] is the local polynomial basis, and the subdomains D are linear triangular ele-
ments. The flux is approximated as
F N ðpN Þ ¼
XðNþ1ÞðNþ2Þ=2

k¼1

F N ðpN ðxkÞÞLkðxÞ: ð6:62Þ
We require that the equation be satisfied on each element in the following discontinuous Galerkin way
Z
D

opN

ot
þr � F N

� �
LkðxÞdx ¼

I
dD

LkðxÞn̂ � ½F N � F �N 	dx: ð6:63Þ
We use a local Lax-Friedrichs numerical flux
F �N ¼
F N ðpþN Þ þ F N ðp�N Þ

2
� jkj

2
ðpþN � p�N Þ; ð6:64Þ
where |k| is the maximum local eigenvalue of the flux Jacobian
jkj ¼ max
pþN ;p

�
N

ðjuj þ cÞ ¼ max
pþN ;p

�
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jcp=qj

p� �
: ð6:65Þ
pþN is the local solution, while p�N is the solution in the neighboring element.
To integrate the resulting system of ODEs in time, we use a 4th-order low-storage explicit Runge–Kutta

method [5] for all numerical experiments in this paper. For IMEX-RK results, we use the 4th-order Additive
Runge–Kutta scheme, ARK4(3) [18].

Note that for the nozzle flow test case, the filter is applied once per time step (at the end of time step), while
for the cylinder flow test case the filter is applied once per Runge–Kutta stage (at the end of each stage).
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